August 3, 2024 — Editor’s note: This story was originally published by Knowable Magazine. You can read a version of the story in Spanish here.
As the world races to decarbonize everything from the electricity grid to industry, it faces particular problems with transportation — which alone is responsible for about a quarter of our planet’s energy-related greenhouse gas emissions. The fuels for transport need to be not just green, cheap and powerful, but also lightweight and safe enough to be carried around.
Fossil fuels — mainly gasoline and diesel — have been extraordinarily effective at powering a diverse range of mobile machines. Since the industrial revolution, humanity has perfected the art of dredging these up, refining them, distributing them and combusting them in engines, creating a vast and hard-to-budge industry. Now we have to step away from fossil fuels, and the world is finding no one-size-fits-all replacement.
Each type of transportation has its own peculiarities — which is one reason we have different formulations of hydrocarbons today, from gasoline to diesel, bunker fuel to jet fuel. Cars need a convenient, lightweight power source; container ships need enough oomph to last months; planes absolutely need to be reliable and to work at subzero temperatures. As the fossil fuels are phased out, the transport fuel landscape is “getting more diverse,” says Timothy Lipman, codirector of the Transportation Sustainability Research Center at the University of California, Berkeley.
Every energy solution has its pros and cons. Batteries are efficient but struggle with their weight. Hydrogen — the lightest element in the universe — packs a huge energy punch, but it’s expensive to make in a “green” way and, as a gas, it takes up a lot of space. Liquid fuels that carry hydrogen can be easier to transport or drop into an existing engine, but ammonia is toxic, biofuels are in short supply, and synthetic hydrocarbons are hard to produce.
The scale of this energy transition is massive, and the amount of renewable energy the world will require to make the needed electricity and alternative fuels is “a little bit mind-blowing,” says mechanical engineer Keith Wipke, manager of the fuel cell and hydrogen technologies program at the National Renewable Energy Laboratory in Colorado. Everything, from the electrical grid to buildings and industry, is also thirsty for renewable power: It’s estimated that overall, the global demand for electricity could more than double by 2050. Fortunately, analyses suggest that renewables are up to the task. “We need our foot on the accelerator pedal of renewables 100%, as fast as we can, and it will all get used,” says Wipke.
Related Posts
Ensia shares solutions-focused stories free of charge through our online magazine and partner media. That means audiences around the world have ready access to stories that can — and do — help them shape a better future. If you value our work, please show your support today.
Yes, I'll support Ensia!